Evidence for Broad-Scale Conservation of Linkage Map Relationships Between Rhagoletis pomonella (Diptera: Tephritidae) and Drosophila melanogaster (Diptera: Drosophilidae)

Author(s):  
Joseph B. Roethele ◽  
Jeanne Romero-Severson ◽  
Jeffrey L. Feder
Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 715-726 ◽  
Author(s):  
Ruth E Fulton ◽  
Michael L Salasek ◽  
Nancy M DuTeau ◽  
William C Black

AbstractAn intensive linkage map of the yellow fever mosquito, Aedes aegypti, was constructed using single-strand conformation polymorphism (SSCP) analysis of cDNA markers to identify single nucleotide polymorphisms (SNPs). A total of 94 A. aegypti cDNAs were downloaded from GenBank and primers were designed to amplify fragments <500 bp in size. These primer pairs amplified 94 loci, 57 (61%) of which segregated in a single F1 intercross family among 83 F2 progeny. This allowed us to produce a dense linkage map of one marker every 2 cM distributed over a total length of 134 cM. Many A. aegypti cDNAs were highly similar to genes in the Drosophila melanogaster genome project. Comparative linkage analysis revealed areas of synteny between the two species. SNP polymorphisms are abundant in A. aegypti genes and should prove useful in both population genetics and mapping studies.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1513-1525 ◽  
Author(s):  
Yuji Yasukochi

Abstract A dense linkage map was constructed for the silkworm, Bombyx mori, containing 1018 genetic markers on all 27 autosomes and the Z chromosome. Most of the markers, covering ∼2000 cM, were randomly amplified polymorphic DNAs amplified with primer-pairs in combinations of 140 commercially available decanucleotides. In addition, eight known genes and five visible mutations were mapped. Bombyx homologues of engrailed and invected genes were found to be closely linked, as in Drosophila melanogaster. The average interval between markers was ∼2 cM, equal to ∼500 kb. The correspondence of seven linkage groups to counterparts of the conventional linkage map was determined. This map is the first linkage map in insects having a large number of chromosomes (n = 28) that covers all chromosomes without any gaps.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170447 ◽  
Author(s):  
Vanessa Kellermann ◽  
Belinda van Heerwaarden ◽  
Carla M. Sgrò

A common practice in thermal biology is to take individuals directly from the field and estimate a range of thermal traits. These estimates are then used in studies aiming to understand broad scale distributional patterns, understanding and predicting the evolution of phenotypic plasticity, and generating predictions for climate change risk. However, the use of field-caught individuals in such studies ignores the fact that many traits are phenotypically plastic and will be influenced by the thermal history of the focal individuals. The current study aims to determine the extent to which estimates of upper thermal limits (CTmax), a frequently used measure for climate change risk, are sensitive to developmental and adult acclimation temperatures and whether these two forms of plasticity are reversible. Examining a temperate and tropical population of Drosophila melanogaster we show that developmental acclimation has a larger and more lasting effect on CTmax than adult acclimation. We also find evidence for an interaction between developmental and adult acclimation, particularly when flies are acclimated for a longer period, and that these effects can be population specific. These results suggest that thermal history can have lasting effects on estimates of CTmax. In addition, we provide evidence that developmental and/or adult acclimation are unlikely to contribute to substantial shifts in CTmax and that acclimation capacity may be constrained at higher temperatures.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


Sign in / Sign up

Export Citation Format

Share Document